Factors influencing the extent and selectivity of alkylation within triplexes by reactive G/A motif oligonucleotides.
نویسندگان
چکیده
G/A motif triplex-forming oligonucleotides (TFOs) complementary to a 21 base pair homopurine/homopyrimidine run were conjugated at one or both ends to chlorambucil. These TFOs were incubated with several synthetic duplexes containing the targeted homopurine run flanked by different sequences. The extent of mono and interstrand cross-linking was compared with the level of binding at equilibrium. Covalent modification took place within a triple-stranded complex and usually occurred at guanine residues in the flanking double-stranded DNA. The efficiency of alkylation was dependent upon the sequence of the flanking duplex, the solution conditions, and the rate of triplex formation relative to the rate of chlorambucil reaction. Self-association of the TFOs as parallel duplexes was demonstrated and this did not interfere with triple strand formation. With an optimal target, cross-linking of the triplex was very efficient when incubation was carried in a physiological buffer supplemented with the triplex selective intercalator coralyne.
منابع مشابه
Minor groove DNA alkylation directed by major groove triplex forming oligodeoxyribonucleotides.
We describe sequence-specific alkylation in the minor groove of double-stranded DNA by a hybridization-triggered reactive group conjugated to a triplex forming oligodeoxyribonucleotide (TFO) that binds in the major groove. The 24 nt TFOs (G/A motif) were designed to form triplexes with a homopurine tract within a 65 bp target duplex. They were conjugated to an N 5-methyl-cyclopropapyrroloindole...
متن کاملApplication of GA in Optimization of Modified Benzene Alkylation Process
A genetic algorithm is used to optimize the modified benzene alkylation process. Based on the previous studies, the modified process increases ethylbenzene selectivity and decreases energy consumption at the same time. The inlet ethylene flow rate of each alkylation reactor is optimized in order to reduce the chance of transalkylation reactions but increase ethylbenzene selectivity. The byprodu...
متن کاملSynthesis and triplex-forming properties of cyclic oligonucleotides with (G,A)-antiparallel strands.
Cyclic oligonucleotides carrying an oligopurine Watson-Crick sequence linked to the corresponding (G,A)- and (G,T)-antiparallel strands were prepared by nonenzymatic template-assisted cyclization of phosphorylated precursors. Cyclization was attempted using 3'-phosphate and 5'-phosphate linear precursors with carbodiimide or BrCN activation. The best results were obtained with the 5'-phosphoryl...
متن کاملShape Selective Alkylation of Biphenyl with 1-octene on ((Al+C3H7Cl)+C2H4) Catalysts
Alkylation of biphenyl with 1-octene was investigated using ((Al+C3H7Cl)+C2H4) catalysts. The catalytic activity of ((Al+C3H7Cl)+C2H4) for the alkylation was studied at different temperatures, mol ratios of biphenyl to 1-octene, reaction times and catalyst concentrations. It was shown that using this catalyst has more advantagous than another catalysts. Experiments show that by increasing t...
متن کاملExtension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine-containing oligonucleotides.
Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 25 20 شماره
صفحات -
تاریخ انتشار 1997